Immagine Radiosondaggi di Ascoli Piceno (WRF)
Radiosondaggi previsti per Ascoli Piceno. modello WRF-NMM
Video rubrica Tempo al Tempo

Il VIDEO-METEO del Capitano Sottocorona

Iscriviti al nostro canale Youtube!

Immagine WRF Temp 2m Diff (ita) - 8km NMM by GFS
In questa mappa del modello WRF-NMM-8km (dati GFS) sull'Italia, è rappresentata la differenza di... Leggi tutto...
Immagine Icon 1h/3h Prec ITA (Wz)
Precipitazioni previste sull'Italia (con gli accumuli su 1 ora e 3 ore) dal modello tedesco ICON.... Leggi tutto...
Immagine Meteo e Clima in Provincia di Palermo
Ha un'area molto vasta la provincia di Palermo, occupando una porzione notevole del settore... Leggi tutto...
Immagine Meteo e Clima in Provincia di Viterbo
Collocata nella parte nord-occidentale della regione di cui fa parte, la provincia di... Leggi tutto...
Immagine Rapporto OMS: le città più inquinate del Mondo
La crisi economica ha avuto almeno il merito di abbattere i livelli di CO2, ma i recenti dati... Leggi tutto...
Immagine UNA SETTIMANA DI GRAN CALDO: DA MERCOLEDÌ LE TEMPERATURE PIÙ ELEVATE SU TUTTA ...
Nel corso di questa settimana entreremo nel pieno della quarta ondata di calore, iniziata con il... Leggi tutto...

Le ultimissime dal Televideo RAI

Anteprima Televideo RAI

ESTREMI METEO OGGI. RETE LMT

Stimare la PROBABILITA' di PRECIPITAZIONI con la tecnica ENSEMBLE

Stimare la PROBABILITA' di PRECIPITAZIONI con la tecnica ENSEMBLE

Mappa ensemble precipitazioni prevista per Domenica 3 NovembreVi presentiamo un prodotto prognostico utile per avere una stima della probabilità di precipitazioni su una certa area geografica. Chi conosce gli "spaghetti" delle corse ensemble dei modelli, sa perfettamente che i modelli matematici sono piuttosto sensibili (purtroppo) agli errori, in particolare quelli sulle condizioni iniziali.

Per valutare l'affidabilità di una certa simulazione, opportunamente e deliberatamente si vanno quindi a modificare tali condizioni iniziali per vedere quanto le soluzioni divergono rispetto alla corsa principale. Ne esce così un ventaglio (spaghetti...) di soluzioni di un certo parametro (altezze geopotenziali, temperature, ecc...) che in alcune zone magari divergono parecchio (scarsa affidabilità previsionale) e in altre no (alta affidabilità previsionale). Nel modello GFS sono attualmente 30 le corse utilizzate (con circa 25km di risoluzione, più bassa risoluzione rispetto al GFS "operativo") + il run di controllo. In queste mappe calcoliamo, punto (griglia) per punto, l'accumulo delle precipitazioni nelle 24 ore previste da ognuna delle 31 corse. Poi stabiliamo una soglia oltre la quale diciamo che c'è "segnale" precipitativo (ad esempio: 1mm, 5mm, 10mm ecc...).

In generale, alcune soluzioni supereranno la soglia, altre no. Andiamo dunque a tracciare il rapporto tra il numero di corse che superano la soglia rispetto al totale, ottenendo così la percentuale di corse che danno segnale su una certa area.

Il termine "probabilistica" lo abbiamo messo tra virgolette perché in effetti più è alta la percentuale, più ci sono soluzioni che convergono verso l'evento "pioggia sì" e quindi più è probabile che piova (specie se la soglia scelta è medio-alta). Tuttavia non va preso alla lettera, perché, ad esempio, se tutte le corse ensemble forniscono segnale precipitativo, la percentuale diventa 100% (31/31), ma ciò non va certo interpretato come pioggia certa! Anche i mm usati come soglia non vanno presi alla lettera, ma solo per individuare le zone con la maggiore intensità del segnale modellistico.


Esempio pratico con la mappa riportata qui (quando le corse erano solo 21, ma l'esempio ovviamente vale ancora): al momento in cui scriviamo, per la giornata di Domenica 3 Novembre 2019, nell'arco delle 24 ore, la "probabilità" di precipitazioni maggiore (con soglia > 5mm) l'abbiamo su Alpi e Prealpi centro-orientali, ovest Sardegna, regioni tirreniche dalla Toscana alla Campania. In particolare le zone blu sono quelle in cui più dell'85% delle corse ensemble mostrano segnale oltre i 5mm. Le zone di tonalità verde sono quelle con le percentuali sotto il 50%. Per inciso nelle mappe riportiamo anche la pressione atmosferica slm media, di quel giorno, delle 21 corse.

Riteniamo che questo tipo di stima, assieme al run principale operativo a più alta risoluzione (più, magari, qualche LAM, come il nostro modello WRF), possa aiutare ad individuare meglio non solo le aree a maggior rischio di precipitazioni, ma anche a capire quando non è il caso di avventurarsi nella previsione e aspettare che le "probabilità" diventino più elevate per poter sciogliere una prognosi. E per chi è interessato, questo è il link per le mappe precipitative probabilistiche ensemble.

Stampa